Abstract
Biological soil disinfestation (BSD) is a method of controlling soil-borne pests and diseases through anaerobic decomposition of plant biomass incorporated in field soil with temporary irrigation and covering with sheets. In this study, effects of BSD on suppression of spinach wilt disease were investigated in two different field experiments using mainly Brassica juncea plants as plant biomass. Soil bacterial community compositions were analyzed with clone library analysis based on 16S rRNA gene sequences to determine the relationship between the bacterial composition in the treated soil and suppression of the disease. For the BSD-treated soils, oxidation–reduction potential dropped, and acetate was usually detected at high concentrations. Although the control treatment (irrigation and polythene covering without biomass) decreased the wilt disease incidence in spinach plants cultivated in the treated plot as compared with those for the non-treated plot, BSD-treatments suppressed the disease more effectively. The clone library results showed that both non-treated and control soils contained diversified bacterial communities of various phylogenetic groups, while members of the Firmicutes mainly from the class Clostridia dominated in the BSD-treated soils. The clostridial groups detected were diverse and the major clone groups were closely related to strictly anaerobic fermentative bacteria such as Clostridium saccharobutylicum, Clostridium cylindrosporum, Clostridium sufflavum, and Clostridium xylanovorans. These clostridial groups were almost eliminated from the soil bacterial community when the BSD-treated soil was treated again with irrigation and covering without biomass before the next cropping, in which the wilt disease was hardly suppressed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.