Abstract
In recent years, several genetic components of vegetative axillary bud development have been defined in both monocots and eudicots, but our understanding of environmental inputs on branching remains limited. Recent work in sorghum (Sorghum bicolor) has revealed a role for phytochrome B (phyB) in the control of axillary bud outgrowth through the regulation of Teosinte Branched1 (TB1) gene. In maize (Zea mays), TB1 is a dosage-dependent inhibitor of axillary meristem progression, and the expression level of TB1 is a sensitive measure of axillary branch development. To further explore the mechanistic basis of branching, the expression of branching and cell cycle-related genes were examined in phyB-1 and wild-type sorghum axillary buds following treatment with low-red : far-red light and defoliation. Although defoliation inhibited bud outgrowth, it did not influence the expression of sorghum TB1 (SbTB1), whereas changes in SbMAX2 expression, a homolog of the Arabidopsis (Arabidopsis thaliana) branching inhibitor MAX2, were associated with the regulation of bud outgrowth by both light and defoliation. The expression of several cell cycle-related genes was also decreased dramatically in buds repressed by defoliation, but not by phyB deficiency. The data suggest that there are at least two distinct molecular pathways that respond to light and endogenous signals to regulate axillary bud outgrowth.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.