Abstract

The aim of this work was to study the effects of sound frequency, sound intensity and viscosity of slag on the slag foaming rate and the steady-state foam height. Experiments were carried out using two slags (BaO–B 2O 3) melted at a temperature of 1223 or 1273 K, as well as water–glycerin solutions at room temperature. Low frequency sound waves (<1.3 kHz) are found to be more effective in the slag foaming suppression than high frequency waves (1.3–12 kHz). The steady-state foam height decreases abruptly when the sound pressure reaches a threshold value that depends on sound frequency and liquid viscosity. The results can be explained in terms of enhancing the rates of liquid drainage and film rupture induced by sound.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call