Abstract

We study the Auger effect in the presence of strong x-ray free-electron lasers (XFELs) propagating through resonant argon vapors by solving the Maxwell–Bloch equations numerically. The simulations are based on the three-level system with the carrier frequency tuned in the 2p3/2–4s resonance. It is shown that the Auger branching is sensitive to the pulse area and duration. The relative Auger yield can be suppressed in the course of pulse propagation due to the interplay between the Auger decay and stimulated emission. Further suppression can be achieved by chirping the initial pulse, which is more effective for the long-pulse case. In addition, the sign and magnitude of the chirp rate play important roles in pulse reshaping and Auger emission.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.