Abstract

Experiments on studying the stability of Z-pinch compression were carried out at a current of 450 kA with a build-up time of 450 ns. The plasma shell of the pinches was formed by evaporating the electrode material in the process of vacuum arc burning. The Rayleigh–Taylor (RT) instabilities were suppressed using the regime of arc combustion on the surface of one of the electrodes in the high-voltage gap in which the pinch was positioned. As a result of free plasma discharge, the radial density distribution was formed such that the plasma concentration increased from the outer boundary to the shell axis. The experiments demonstrated that such an initial radial density distribution almost completely suppresses of the RT instability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.