Abstract

We report on the suppressed randomness in electrically pumped random lasing (RL) from a light-emitting device (LED) based on a metal-insulator-semiconductor (MIS) structure of Au/SiOx (x < 2)/ZnO on a silicon substrate, by means of patterning the light-emitting ZnO polycrystalline film into a number of square blocks separated by streets that are filled with the SiOx insulator. It is found that the RL modes can be remarkably reduced by shrinking the blocks in the absence of interblock optical coupling. Meanwhile, with the imposition of interblock optical coupling by shrinking the streets, the RL modes can be further reduced, and more importantly, the strongest mode wavelength is stabilized around 380 nm, where the ZnO film exhibits the largest optical gain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.