Abstract

The ability to isolate a quantum system from its environment is of fundamental interest and importance in optical quantum science and technology. Here we propose an experimentally feasible scheme for beating environment-induced dissipation in an open two-level system coupled to a parametrically driven cavity. The mechanism relies on a novel, to the best of our knowledge, cooperation between light-matter coupling enhancement and frequent measurements. We demonstrate that, in the presence of the cooperation, the system dynamics can be completely dominated by the effective system-cavity interaction, and the dissipative effects from the system-environment coupling can be surprisingly ignored. This work provides a generic method of dissipation suppression in a variety of quantum mechanical platforms, including natural atoms and superconducting circuits.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.