Abstract

Trans-differentiation of one somatic cell type into another has enormous potential to model and treat human diseases. Previous studies have shown that mouse embryonic, dermal, and cardiac fibroblasts can be reprogrammed into functional induced-cardiomyocyte-like cells (iCMs) through overexpression of cardiogenic transcription factors including GATA4, Hand2, Mef2c, and Tbx5 both in vitro and in vivo. However, these previous studies have shown relatively low efficiency. In order to restore heart function following injury, mechanisms governing cardiac reprogramming must be elucidated to increase efficiency and maturation of iCMs. We previously demonstrated that inhibition of pro-fibrotic signaling dramatically increases reprogramming efficiency. Here, we detail methods to achieve a reprogramming efficiency of up to 60%. Furthermore, we describe several methods including flow cytometry, immunofluorescent imaging, and calcium imaging to quantify reprogramming efficiency and maturation of reprogrammed fibroblasts. Using the protocol detailed here, mechanistic studies can be undertaken to determine positive and negative regulators of cardiac reprogramming. These studies may identify signaling pathways that can be targeted to promote reprogramming efficiency and maturation, which could lead to novel cell therapies to treat human heart disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.