Abstract

A recent trend of the power system is the ever increasing number of distributed generators (DGs) utilizing renewable energy sources, which have output powers that fluctuate due to unpredictable weather and ambient conditions. This causes fluctuations in system frequency and bus voltages, resulting in poor quality power, higher prices for electricity, and increased chances of reverse power flow and voltage collapse. In order to allow higher levels of DG penetration, methods of reducing the effects of fluctuations must be implemented. This paper proposes a method to mitigate these fluctuations using controllable loads such as heat pump water heaters (HPs) and battery storage systems. The HPs are controlled using a decentralized bang-bang (on/off) control based on the cumulative distribution of water temperature of HPs in the local area and the local frequency. Battery systems are controlled using a smart frequency and voltage droop characteristics based control. The decentralized bang-bang control mitigates local frequency fluctuations by increasing active power consumption to lower frequency as well as decreasing active power consumption to increase the frequency. The smart droop characteristics based control applies a commonly used droop characteristics control to voltage and frequency; however, the control system monitors the state of charge (SOC) of the battery system and takes appropriate actions to prevent the SOC from reaching a critical level. The results of simulations show that fluctuations in frequency and bus voltage are mitigated by the application of the proposed control methodologies without adversely affecting the comfort level of consumers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.