Abstract

Buckwheat residues can suppress both emergence and growth of weeds, but the mechanisms of this suppression are not well understood. The main objectives of this research were to evaluate the possible role of (1) low initial nitrogen (N) availability and (2) fungal pathogens in this suppression for three sensitive weed species: Powell amaranth, shepherd's-purse, and corn chamomile. Growth chamber experiments were conducted comparing weed emergence and growth in bare soil or soil with freshly incorporated buckwheat residue at multiple rates of N fertilization with or without fungicide seed treatment. In the absence of N or fungicide addition, emergence of all weed species was reduced 40 to 70%, and dry weight was reduced 85% in buckwheat residue compared with bare soil. For all three weed species, suppression of growth by buckwheat residue was completely overcome with the addition of N. For shepherd's-purse and corn chamomile (2005 only), suppression of emergence was also overcome with the addition of N. In 2006, treatment of corn chamomile seeds with fungicide resulted in a higher emergence in buckwheat residue than in bare soil. In contrast, suppression of Powell amaranth emergence was not overcome with N fertilization or fungicide treatment. The results suggest that buckwheat-mediated changes in N dynamics account entirely for suppression of weed growth but that the mechanisms responsible for suppression of emergence by buckwheat residue vary by species. Fungal and N effects account for suppression of emergence of corn chamomile and shepherd's-purse, but the mechanism of suppression for Powell amaranth remains obscure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call