Abstract

Silicon amendments to hydroponic nutrient solutions have been used successfully in Canada to suppress powdery mildew (PM) caused by Sphaerotheca fuliginea on cucumber (Cucumis sativus). In contrast, preliminary trials in Florida greenhouses failed to achieve the level of disease suppression reported in the literature for Canadian studies. A series of greenhouse experiments were conducted in Florida to determine the factors involved in reducing the effectiveness of silicon amendments for PM suppression on cucumber. Three horticultural practices (cultivar, nutrient solution formula, and rooting medium) and two environmental factors (light intensity and temperature) were tested in combination with silicon amendments for their effects on the suppression of PM on cucumber. When plants were irrigated with a standard nutrient solution amended with potassium silicate at 0 mg/liter, the cucumber cv. Vetomil was found to be resistant and cvs. Corona, Cilla, Farbio, and Toska were found to be susceptible to PM. Susceptible cultivars irrigated with potassium silicate at 100, 150, or 200 mg/liter exhibited a slight but statistically significant reduction in PM over the course of a 49-day trial. Although PM in the cultivar trial was slightly lower in treatments with added silicon, disease suppression with silicon was not commercially useful because it failed to increase fruit yields. Nutrient solution formula, rooting medium, and light intensity had no effects on the levels of PM suppression, regardless of whether plants were irrigated with potassium silicate at 0 or 100 mg/liter. Temperature was found to act in a synergistic manner with silicon. The greatest effect of temperature on PM suppression was observed at 20°C in which cucumber plants, irrigated with silicon at 100 mg/liter, exhibited significant reductions in the numbers of PM colonies per leaf. Disease suppression by silicon was observed at 25 and 30°C, but the magnitude of the disease suppression was significantly lower than when plants were maintained at 20°C. The effect of temperature on PM suppression by silicon may explain the difference in results between previous experiments in Canada, where greenhouse temperatures averaged 20 to 25°C, and the current study in Florida, where greenhouse temperatures averaged 24 to 32°C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.