Abstract
Human platelet-type 12-lipoxygenase (12-LOX) and its metabolites play a crucial role in tumor angiogenesis. A “10–23” deoxyribozyme (DNAzyme) and its phosphorothioate-modified version were designed and synthesized against the 12-LOX mRNA. Both DNAzymes were able to cleave their substrate efficiently in a time- and concentration-dependent manner in vitro. Under a multiple turnover condition, both performed well at 37°C, showing the kcat of 1 and 0.26 min−1, respectively. The phosphorothioate modification of the DNAzyme significantly increased its stability in cells without a substantial loss of kinetic efficiency in vitro. In a cell culture system, transfection of the DNAzymes into HEL cells resulted in a significant down-regulation of the 12-LOX mRNA. Furthermore, the cell extracts from the DNAzyme-transfected cells exhibited a marked reduction in the 12-LOX enzyme activity. The present results indicated the potential use of DNAzyme technology for gene function study and cancer therapy.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochemical and Biophysical Research Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.