Abstract

The paper discusses the effect of quantum chaos on photon-echo signals of two-electronic-state molecular systems. The temporal profile of photon-echo signals is shown to reveal key information about nuclear dynamics on the excited electronic state surface. Specifically, the suppression of echo signals at a particular value of the delay time tau1 between the first and second excitation pulses is demonstrated as a signature of quantum level statistics that corresponds to the classically chaotic nuclear motion in the excited electronic state surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.