Abstract

Helium (^{4}He) nanodroplets provide a unique environment to observe the microscopic origins of superfluidity. The search for another superfluid substance has been an ongoing quest in the field of quantum fluids. Nearly two decades ago, experiments on doped parahydrogen (p-H_{2}) clusters embedded in ^{4}He droplets displayed anomalous spectroscopic signatures that were interpreted as a sign of the superfluidity of p-H_{2} [S. Grebenev etal., Science 289, 1532 (2000)SCIEAS0036-807510.1126/science.289.5484.1532]. Here, we observe, using first-principles quantum MonteCarlo simulations, a phase separation between a symmetric and localized p-H_{2} core and ^{4}He shells. The p-H_{2} core has minimal superfluid response. These findings are consistent with the recorded spectra but not with their original interpretation, and lead us to conclude that doped p-H_{2} clusters form a nonsuperfluid core in ^{4}He droplets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.