Abstract

BackgroundRats with hyperandrogen-induced polycystic ovary syndrome (PCOS) have been shown to develop ovarian oxidative stress (OS) and fibrosis. The Sirt1 agonist, resveratrol, can reduce OS through inhibiting p66Shc in other models of OS.MethodsWe created a rat PCOS model with increased OS levels following treatment with one of the two androgens, dehydroepiandrosterone (DHEA) and dihydrotestosterone (DHT). The PCOS related features were determined by measurement of malondialdehyde (MDA) and superoxide dismutase (SOD) levels or by examining the reactive oxygen species (ROS) levels using the DCF-DA probe. The potential mechanisms by which p66Shc/Sirt1 mediates ovarian fibrosis were explored by western blotting, quantitative reverse transcription-PCR, immunofluorescence staining, and immunohistochemistry.ResultsHyperandrogen dramatically augmented OS and activation of fibrotic factors in the ovary. Our data demonstrated that treatment with resveratrol enhanced Sirt1 and decreased ovarian OS as well as inhibited phosphorylation of p66Shc both in vivo and in vitro. The treatment suppressed fibrotic factor activation and improved ovarian morphology. Lentivirus- or siRNA-mediated p66Shc knockdown resulted in a dramatic enhancement of Sirt1 expression, down-regulation of ROS and suppression of fibrotic factors in granulosa cells. Moreover, p66Shc overexpression markedly increased the expression of fibrotic factors. Additionally, silencing Sirt1 induced a dramatic increase in p66Shc and enhanced activation of fibrotic factors.Conclusionsp66Shc may be a direct target of Sirt1 for inducing ROS and thus promoting fibrosis. Further exploration of the mechanisms of p66Shc in both fibrosis and OS may provide novel therapeutic strategies that will facilitate the improvement in PCOS symptoms and reproductive functions.

Highlights

  • Rats with hyperandrogen-induced polycystic ovary syndrome (PCOS) have been shown to develop ovarian oxidative stress (OS) and fibrosis

  • Hyperandrogenic ovarian dysfunction and fibrosis are improved by treatment with resveratrol possibly via the suppression of OS DHEA-induced PCOS rats that had been treated with resveratrol demonstrated lower body weights compared with untreated PCOS rats (Fig. 1a)

  • sirtuin type 1 (Sirt1) can partially decrease the expression of p66Shc and exert anti-OS activities

Read more

Summary

Introduction

Rats with hyperandrogen-induced polycystic ovary syndrome (PCOS) have been shown to develop ovarian oxidative stress (OS) and fibrosis. Polycystic ovary syndrome (PCOS) patients are characterized by androgen excess, insulin resistance, chronic anovulation and ovarian fibrosis, which are the most common causes of irregular menstruation, amenorrhea, infertility, hirsutism and acne in young women [1]. Androgens such as dehydroepiandrosterone (DHEA), testosterone and dihydrotestosterone (DHT) play. Recent research demonstrated that androgen-induced PCOS rats demonstrated ovarian fibrosis which can compromise ovarian functions [7]. Studies in lungs and kidneys have shown that the pro-fibrosis factor transforming growth factor-beta (TGF-β) can stimulate the production of reactive oxygen species (ROS), which in turn activates fibrogenic factors such as TGF-β and connective tissue growth factor (CTGF) [8]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call