Abstract

It has been previously shown that despite its simplicity, appropriate nonstandard schemes greatly improve or eliminate numerical instabilities. In this work we construct several standard and nonstandard finite-difference schemes to solve a system of three ordinary nonlinear differential equations that models photoconductivity in semiconductors and for which it has been shown that integration with a conventional fourth-order Runge-Kutta algorithm produces numerical-induced chaos. It was found that a simple nonstandard forward Euler scheme successfully eliminates these numerical instabilities. In order to help determine the best finite-difference scheme, it was found useful to test the local stability of the scheme by direct inspection of the eigenvalues dependent on the step size.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call