Abstract

NOx formation in premixed, highly-strained, pure hydrogen-air flamelets is investigated at lean conditions. Detailed-chemistry, one-dimensional and two-dimensional simulations are performed on a reactants-to-products configuration with varying applied strain rate. The results highlight for the first time for lean pure-hydrogen flamelets that NOx emissions are suppressed as strain rate is increased. The most substantial decrease is observed across the thermal NOx formation pathway. Here the suppression of NOx is triggered by a redistribution across the flamelet of the radicals involved in the pathway reactions. A comparison with methane flamelets is further performed to understand to what extent the observed trends with strain can be specifically linked to hydrogen burning features. Similar NOx suppression trends with strain are also observed for increased pressure and different equivalence ratios, although with different rates of decrease. A correlation is proposed based on the observed results and further theoretical considerations, to predict NOx emissions according to applied strain rate and equivalence ratio.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call