Abstract

To elucidate catecholamine (CA) secretory dynamics in neuroblastoma, urinary excretion of CAs and their metabolites was serially measured in 6 patients aged 3 months to 3 years before and during treatment. After tumor extirpation, increased urinary CAs were promptly normalized; the reduction reflected the amount of CA production from the tumor. Urinary dopamine (DA) showed the most prominent reduction, whereas DA content in the tumor was very small, indicating that the DA produced was immediately released from the tumor and metabolized in extra-tumor tissues. In contrast, patients receiving chemotherapy continued to excrete excess DA and homovanillic acid (HVA), which were increased further at recidivation. One patient showed an inverse correlation between DA and norepinephrine (NE) excretion; a decrease in DA was associated with an increase in NE and plasma DA-beta-hydroxylase (DBH) activity. A similar inverse correlation was also noted between NE and vanillylmandelic acid (VMA) or 3-methoxy-4-hydroxyphenylglycol (MHPG) excretion, while HVA and dihydroxyphenylacetic acid (DOPAC) were positively correlated with DA excretion. Urinary HVA and VMA were lineally correlated but in a patient excreting an enormous amount of DA, urinary VMA was markedly suppressed in terms of HVA excretion. Excessive DA induced an increase in renal water output but did not enhance Na and K excretion. These results indicate that endogenous DA overload in neuroblastoma inhibits NE production by suppressing DBH activity as well as by forming VMA and MHPG. This precursor regulation appears to be the characteristic of the CA metabolic pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call