Abstract
Suppression of methane/air and propane/air nonpremixed counterflow flames, and n-heptane and methanol cup burner flames by fluorinated hydrocarbons was investigated. Four fluorinated ethanes, 10 fluorinated propanes, four bromine- or iodine-containing halons, and the inert agents CF 4, SF 6, and N 2 were tested in some or all of the flames. Laser Doppler velocimetry (LDV) determinations of peak velocity gradients in the oxidizer flow of the counterflow flames were found to be linearly correlated with the expression for global strain rate derived for plug flow boundary conditions. This correlation was used to estimate strain rate values at extinction. The bromine- or iodine-containing agents are more effective on a molar basis than the fluorinated propanes, followed by the fluorinated ethanes, and finally SF 6, CF 4, and N 2. Agent effectiveness increases with the number of CF 3 groups present in the agent molecular structure. Numerical investigations of the flame speed reduction of methane/air mixtures doped with either CHF 2CHF 2 or CF 3CH 2F predict that the latter is the better agent, in accord with experimental observations. Chemical contributions to suppression account for less than 35% of the total suppression offered by fluorinated hydrocarbons not containing bromine or iodine. At strain rates below 100 s −1, suppression effectiveness rankings in methane and propane counterflow flames are similar to those obtained in n-heptane and methanol cup burner flames. Methanol flames are more difficult to extinguish than the alkane flames investigated, particularly with the chemical agent CF 3Br.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.