Abstract

We consider a two-level system coupled to a highly non-Markovian environment when the coupling axis rotates with time. The environment may be quantum (for example a bosonic bath or a spin bath) or classical (such as classical noise). We show that an Anderson orthogonality catastrophe suppresses transitions, so that the system's instantaneous eigenstates (parallel and antiparallel to the coupling axis) can adiabatically follow the rotation. These states thereby acquire Berry phases; geometric phases given by the area enclosed by the coupling axis. Unlike in earlier proposals for environment-induced Berry phases, here there is little decoherence, so one does not need a decoherence-free subspace. Indeed we show that this Berry phase should be much easier to observe than a conventional one because it is not masked by either the dynamic phase or the leading nonadiabatic phase. The effects that we discuss should be observable in any qubit device where one can drive three parameters in the Hamiltonian with strong man-made noise.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.