Abstract

Recent reports suggest that the apparent magnetosensitivity of the rat pineal gland is a result of induced electric currents (eddy currents) in the animals caused by the transients of activation and deactivation of artificially applied magnetic fields (MF). To test this, young adult male rats were exposed at night when pineal melatonin production is high to situations that caused either the induction of eddy currents or eddy currents plus an intermittently inverted MF. Only those animals exposed to both the inverted MF and induced eddy currents demonstrated alterations in nocturnal pineal indoleamine metabolism. These results demonstrate that the response of the rat pineal gland to an inversion of the MF may be a consequence of at least two interacting factors, i.e., the inverted MF and the induced electric currents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.