Abstract
AimsThe increased incidence of heart failure with reduced ejection fraction in men compared with women suggests that male sex hormones significantly impact myocardial contractile activation. This study aims to examine associations among molecular alterations, cellular modulations and in vivo cardiac contractile function upon deprivation of testicular hormones. Main methodsMyocardial structure and functions were compared among sham-operated control and twelve-week orchidectomized (ORX) male rats with and without testosterone supplementation. Key findingsEchocardiography and pressure-volume relationships demonstrated a decreased left ventricular ejection fraction compared with sham-operated controls. The percentage of contractility reduction was generally similar to the decrease in tension development detected in both right ventricular trabeculae and skinned isolated left ventricular cardiomyocytes of ORX rats. Reductions in tension cost and the rate constant of tension redevelopment (ktr) in ORX samples suggested a decrease in the rate of cross-bridge formation, reflecting a reduced number of cross-bridges. Slow cross-bridge detachment in ORX rat hearts could result from a shift of myosin heavy chain isoforms towards a slower ATPase activity β-isoform and reductions in the phosphorylation levels of cardiac troponin I and myosin binding protein-C. All the changes in the ORX rat heart, including ejection fractions and myofilament protein expression and phosphorylation, were completed attenuated by a physiological dose of testosterone. SignificanceTestosterone plays a critical role in regulating the mechanical and contractile dynamics of the heart. Deprivation of male sex hormones cause the loss of normal preserved cardiac contractile function leading to a high risk of severe cardiomyopathy progression.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.