Abstract

We previously reported that L-leucine suppresses myofibrillar proteolysis in chick skeletal muscles. In the current study, we compared the effects of L- and D-enantiomers of leucine on myofibrillar proteolysis in skeletal muscle of chicks. We also assessed whether leucine itself or its metabolite, alpha-ketoisocaproate (alpha-KIC), mediates the effects of leucine. Food-deprived (24 h) chicks were orally administered 225 mg/100 g body weight L-leucine, D-leucine or alpha-KIC and were sacrificed after 2 h. L-Leucine administration had an obvious inhibitory effect on myofibrillar proteolysis (plasma N(tau)-methylhistidine concentration) in chicks while D-leucine and alpha-KIC were much more effective. We also examined the expression of the proteolytic-related genes (ubiquitin, proteasome, m-calpain and cathepsin B) by real-time PCR of cDNA in chick skeletal muscles. Ubiquitin mRNA expression was decreased by D-leucine and alpha-KIC but not L-leucine. Proteasome and m-calpain mRNA expressions as well as cathepsin B mRNA expression were likewise decreased by L-leucine, D-leucine and alpha-KIC. These results indicate that D-leucine and alpha-KIC suppress proteolytic-related genes, resulting in an decrease in myofibrillar proteolysis while L-leucine is much less effective in skeletal muscle of chicks, may be explain by conversion of D-leucine to alpha-KIC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call