Abstract
To develop a nanoparticle (NP) platform that can expand both CD4+ and CD8+ Treg cells in vivo for the suppression of autoimmune responses in systemic lupus erythematosus (SLE). Poly(lactic-co-glycolic acid) (PLGA) NPs encapsulating interleukin-2 (IL-2) and transforming growth factor β (TGFβ) were coated with anti-CD2/CD4 antibodies and administered to mice with lupus-like disease induced by the transfer of DBA/2 T cells into (C57BL/6 × DBA/2)F1 (BDF1) mice. The peripheral frequency of Treg cells was monitored ex vivo by flow cytometry. Disease progression was assessed by measuring serum anti-double-stranded DNA antibody levels by enzyme-linked immunosorbent assay. Kidney disease was defined as the presence of proteinuria or renal histopathologic features. Anti-CD2/CD4 antibody-coated, but not noncoated, NPs encapsulating IL-2 and TGFβ induced CD4+ and CD8+ FoxP3+ Treg cells in vitro. The optimal dosing regimen of NPs for expansion of CD4+ and CD8+ Treg cells was determined in in vivo studies in mice without lupus and then tested in BDF1 mice with lupus. The administration of anti-CD2/CD4 antibody-coated NPs encapsulating IL-2 and TGFβ resulted in the expansion of CD4+ and CD8+ Treg cells, a marked suppression of anti-DNA antibody production, and reduced renal disease. This study shows for the first time that T cell-targeted PLGA NPs encapsulating IL-2 and TGFβ can expand both CD4+ and CD8+ Treg cells in vivo and suppress murine lupus. This approach, which enables the expansion of Treg cells in vivo and inhibits pathogenic immune responses in SLE, could represent a potential new therapeutic modality in autoimmune conditions characterized by impaired Treg cell function associated with IL-2 deficiency.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.