Abstract

Intravascular photoacoustic (IVPA) imaging is an image-based imaging modality for the assessment of atherosclerotic plaques. Successful application of IVPA for in vivo coronary arterial imaging requires one overcomes the challenge of motion artifacts associated with the cardiac cycle. We propose a method for correcting artifacts owing to cardiac motion, which are observed in sequential IVPA images acquired by the continuous pullback of the imaging catheter. This method groups raw photoacoustic signals into subsets corresponding to similar phases in the cardiac cycles. Thereafter, the sequential images are reconstructed, by representing the initial pressure distribution on the vascular cross-sections based on the clustered frames of signals by time reversal. Results of simulation data demonstrate the efficacy of this method in suppressing motion artifacts. Qualitative and quantitative evaluations of the method indicate an enhancement of the image quality. Comparison results reveal that this method is computationally efficient in motion correction compared with the image-based gating.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call