Abstract

The high carrier mobility of films of semiconducting single-walled carbon nanotubes (SWNTs) is attractive for electronics applications, but the presence of metallic SWNTs leads to high off-currents in transistor applications. The method presented here, cycloaddition of fluorinated olefins, represents an effective approach toward converting the "as grown" commercial SWNT mats into high-mobility semiconducting tubes with high yield and without further need for carbon nanotube separation. Thin-film transistors, fabricated from percolating arrays of functionalized carbon nanotubes, exhibit mobilities >100 square centimeters per volt-second and on-off ratios of 100,000. This method should allow for the use of semiconducting carbon nanotubes in commercial electronic devices and provide a low-cost route to the fabrication of electronic inks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call