Abstract

ABSTRACT We explore the luminosity L of magnetized white dwarfs and its effect on the mass–radius relation. We self-consistently obtain the interface between the electron degenerate-gas dominated inner core and the outer ideal gas surface layer or envelope by incorporating both the components of gas throughout the model white dwarf. This is obtained by solving the set of magnetostatic equilibrium, photon diffusion, and mass conservation equations in the Newtonian framework, for different sets of luminosity and magnetic field. We appropriately use magnetic opacity, instead of Kramer’s opacity, wherever required. We show that the Chandrasekhar limit is retained, even at high luminosity up to about $10^{-2}\, L_\odot$ but without magnetic field, if the temperature is set constant inside the interface. However, there is an increased mass for large-radius white dwarfs, an effect of photon diffusion. Nevertheless, in the presence of strong magnetic fields, with central strength of about 1014 G, super-Chandrasekhar white dwarfs, with masses of about $1.9\, {\rm M}_{\odot }$, are obtained even when the temperature inside the interface is kept constant. Most interestingly, small-radius magnetic white dwarfs remain super-Chandrasekhar even if their luminosity decreases to as low as about $10^{-20}\, L_{\odot }$. However, their large-radius counterparts in the same mass–radius relation merge with Chandrasekhar’s result at low L. Hence, we argue for the possibility of highly magnetized, low luminous super-Chandrasekhar mass white dwarfs that, owing to their faintness, can be practically hidden.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.