Abstract
BackgroundChronic inflammation activated by macrophage innate pathogen recognition receptors such as TLR4 can lead to a range of inflammatory diseases, including atherosclerosis, Crohn's disease, arthritis and cancer. Unlike many microbes, the kinetoplastid protozoan pathogen Leishmania has been shown to avoid and even actively suppress host inflammatory cytokine responses, such as LPS-induced IL-12 production. The nature and scope of Leishmania-mediated inflammatory cytokine suppression, however, is not well characterized. Advancing our knowledge of such microbe-mediated cytokine suppression may provide new avenues for therapeutic intervention in inflammatory disease.MethodsWe explored the kinetics of a range of cytokine and chemokine responses in primary murine macrophages stimulated with LPS in the presence versus absence of two clinically distinct species of Leishmania using sensitive multiplex cytokine analyses. To confirm that these effects were parasite-specific, we compared the effects of Leishmania uptake on LPS-induced cytokine expression with uptake of inert latex beads.ResultsWhilst Leishmania uptake alone did not induce significant levels of any cytokine analysed in this study, Leishmania uptake in the presence of LPS caused parasite-specific suppression of certain LPS-induced pro-inflammatory cytokines, including IL-12, IL-17 and IL-6. Interestingly, L. amazonensis was generally more suppressive than L. major. We also found that other LPS-induced proinflammatory cytokines, such as IL-1α, TNF-α and the chemokines MIP-1α and MCP-1 and also the anti-inflammatory cytokine IL-10, were augmented during Leishmania uptake, in a parasite-specific manner.ConclusionsDuring uptake by macrophages, Leishmania evades the activation of a broad range of cytokines and chemokines. Further, in the presence of a strong inflammatory stimulus, Leishmania suppresses certain proinflammatory cytokine responses in a parasite-specific manner, however it augments the production of other proinflammatory cytokines. Our findings highlight the complexity of inflammatory cytokine signalling regulation in the context of the macrophage and Leishmania interaction and confirm the utility of the Leishmania/macrophage infection model as an experimental system for further studies of inflammatory regulation. Such studies may advance the development of therapies against inflammatory disease.
Highlights
Chronic inflammation activated by macrophage innate pathogen recognition receptors such as TLR4 can lead to a range of inflammatory diseases, including atherosclerosis, Crohn’s disease, arthritis and cancer
To further our understanding of host inflammatory responses modulated by Leishmania, we have explored the inflammation-suppressive effects of both L. major and L. amazonensis in the context of macrophage infection during TLR4 stimulation, upon a broader range of cytokines than previously studied
We investigated the effects of Leishmania upon the induction of IL-3 since IL-3 production may promote intracellular survival because it has been associated with differentiation of monocytes into macrophages that are less responsive to IFNg than macrophages differentiated with GM-CSF [23]
Summary
Chronic inflammation activated by macrophage innate pathogen recognition receptors such as TLR4 can lead to a range of inflammatory diseases, including atherosclerosis, Crohn’s disease, arthritis and cancer. Persistence of, or repeated exposure to certain microbial pathogens, leads to chronically elevated levels of several etiologic inflammatory mediators, including the cytokines IL-12, tumor necrosis factor alpha (TNF-a), interferon-gamma (IFNg), IL-6 and IL-17 [1,7], that are considered to contribute to the onset of inflammatory diseases. Production of these cytokines typically ensues via host cell signalling cascades following the engagement of innate pathogenassociated molecular pattern (PAMP) receptors including the Toll-like receptors (TLRs) expressed primarily by cells of the innate immune compartment, by pathogen-specific ligands, such as bacterial lipopolysaccharide (LPS) [8]. In addition to NF-B activation, TLR signaling may activate mitogen activated protein (MAP) kinase pathways that lead to activation of the transcription factor activating protein 1 (AP-1) and interferon regulatory factor (IRF) signalling [1]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.