Abstract

For efficient operation of many organic electronic devices, organic semiconductors with high charge carrier mobility are required. However, in most of the known organic semiconductors, the charge mobility is low, since it is limited by the strong local electron-phonon interaction. In the present work, using the example of thiophene-phenylene co-oligomers, a class of organic semiconductors that combine a sufficiently high charge mobility with light emission and therefore promising for light-emitting transistors and electrically pumped lasers, the mechanism of suppression of the electron-phonon interaction by introducing electronegative atoms or an additional thiophene ring is studied. It was found that such structural changes alter the contribution of various vibrational modes to the local electron-phonon interaction, in particular, to the suppression of the contribution of the low-frequency torsion mode. In addition, it is shown that for the two modes that make the largest contribution to the local electron-phonon interaction in an unsubstituted oligomer, this change correlates with their intensity of Raman scattering, and this confirms the promise of studying the electron-phonon interaction using Raman spectroscopy. The results obtained improve the understanding of the relationship between the local electron-phonon interaction and the molecular structure of organic semiconductors, which is extremely important for the directed design of such materials with high charge mobility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.