Abstract

Lithium deposition on graphite anodes is considered as a main reason for failures and safety for lithium ion batteries (LIB). Different amounts of carbon coating on the surface of natural graphite are used in this work to suppress the amount of lithium deposited at − 10 °C. Pulse polarization experiments reveal relative polarization of graphite anodes at various temperatures and show that lithium deposition is accelerated at lowered temperatures. Electrochemical experiments, along with photographs, scanning electron microscopy (SEM) images and ex-situ X-ray diffraction (XRD) data suggest that carbon coating not only suppresses the lithium deposition but also enhances the formation of LiC 6 at − 10 °C. The homogeneous potential profile on the graphite surface attained by the carbon coating explains such an improved low temperature performance, as it allows efficient Solid Electrolyte Interface (SEI) film formation, which is a prerequisite for safety LIB.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.