Abstract

The fabrication of high-performance metal oxide thin-film transistors (TFTs) using a low-temperature solution process may facilitate the realization of ultraflexible and wearable electronic devices. However, the development of highly stable oxide gate dielectrics at a low temperature has been a challenging issue since a considerable amount of residual impurities and defective bonding states is present in low-temperature-processed gate dielectrics causing a large counterclockwise hysteresis and a significant instability. Here, we report a new approach to effectively remove the residual impurities and suppress the relevant dipole disorder in a low-temperature-processed (180 °C) AlOx gate dielectric layer by magnesium (Mg) doping. Mg is well known as a promising material for suppression of oxygen vacancy defects and improvement of operational stability due to a high oxygen vacancy formation energy (Evo = 9.8 eV) and a low standard reduction potential (E0 = -2.38 V). Therefore, with an adequate control of Mg concentration in metal oxide (MO) films, oxygen-related defects could be easily suppressed without additional treatments and then stable metal-oxygen-metal (M-O-M) network formation could be achieved, causing excellent operational stability. By optimal Mg doping (10%) in the InOx channel layer, Mg:InOx TFTs exhibited negligible clockwise hysteresis and a field-effect mobility of >4 cm2 V-1 s-1. Furthermore, the electric characteristics of the low-temperature-processed AlOx gate dielectric with high impurities were improved by Mg diffusion originating in Mg doping, resulting in stable threshold voltage shift in the bias stability test.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.