Abstract

The stress-inducible protein heme oxygenase-1 provides protection against oxidative stress and modulates pro-inflammatory cytokines. As the sepsis syndrome results from the release of pro-inflammatory mediators, we postulated that heme oxygenase-1 and its enzymatic product CO would protect against lethality in a murine model of sepsis. Mice treated with a lethal dose of lipopolysaccharide (LPS) and subsequently exposed to inhaled CO had significantly better survival and lower serum interleukin (IL)-6 and IL-1beta levels than their untreated counterparts. In vitro, mouse macrophages exposed to LPS and CO had significantly attenuated IL-6 production; this effect was concentration-dependent and occurred at a transcriptional level. The same effect was seen with increased endogenous CO production through overexpression of heme oxygenase-1. Mutation within the AP-1-binding site in the IL-6 promoter diminished the effect of CO on promoter activity, and treatment of macrophages with CO decreased AP-1 binding in an electrophoretic mobility shift assay. Electrophoretic mobility supershift assay indicated that the JunB, JunD, and c-Fos components of AP-1 were particularly affected. Upstream of AP-1, CO decreased JNK phosphorylation in murine macrophages and lung endothelial cells. Mice deficient in the JNK pathway had decreased serum levels of IL-6 and IL-1beta in response to LPS compared with control mice, and no effect of CO on these cytokine levels was seen in Jnk1 or Jnk2 genedeleted mice. In summary, these results suggest that CO provides protection in a murine model of sepsis through modulation of inflammatory cytokine production. For the first time, the effect of CO is shown to be mediated via the JNK signaling pathway and the transcription factor AP-1.

Highlights

  • Heme oxygenase-1 (HO-1)1 is a microsomal enzyme responsible for the degradation of heme, generating biliverdin, iron, and carbon monoxide (CO)

  • As the sepsis syndrome results from the release of pro-inflammatory mediators, we postulated that heme oxygenase-1 and its enzymatic product CO would protect against lethality in a murine model of sepsis

  • Mutation within the AP-1-binding site in the IL-6 promoter diminished the effect of CO on promoter activity, and treatment of macrophages with CO decreased AP-1 binding in an electrophoretic mobility shift assay

Read more

Summary

Introduction

Heme oxygenase-1 (HO-1) is a microsomal enzyme responsible for the degradation of heme, generating biliverdin, iron, and carbon monoxide (CO). It has recently been demonstrated that the administration of exogenous CO inhibits lipopolysaccharide (LPS)-induced production of tumor necrosis factor-␣ while increasing interleukin (IL)-10 production both in vitro and in vivo [1]. This effect is independent of the guanylyl cyclase/cGMP pathway, and at least in the case of tumor necrosis factor-␣, the effect is post-transcriptional. Knowing the anti-inflammatory effects of CO, we hypothesized that CO would protect against lethality in an animal model of sepsis. We further postulated that modulation of IL-6 production may contribute to the salutary effects of CO We tested these hypotheses using a model of LPS-induced sepsis syndrome

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call