Abstract
Prior studies demonstrate that adenosine, acting at one or more of its receptors, mediates the anti-inflammatory effects of methotrexate in animal models of both acute and chronic inflammation. Both adenosine A2A and A3 receptors contribute to the anti-inflammatory effects of methotrexate treatment in the air pouch model of inflammation, and the regulation of inflammation by these two receptors differs at the cellular level. Because different factors may regulate inflammation at different sites we examined the effect of low-dose weekly methotrexate treatment (0.75 mg/kg/week) in a model of acute peritoneal inflammation in adenosine A2A receptor knockout mice and A3 receptor knockout mice and their wild-type littermates. Following intraperitoneal injection of thioglycollate there was no significant difference in the number or type of leukocytes, tumor necrosis factor alpha (TNF-α) and IL-10 levels that accumulated in the thioglycollate-induced peritoneal exudates in adenosine A2A knockout mice or wild-type control mice. In contrast, there were more leukocytes, TNF-α and IL-10 in the exudates of the adenosine A3 receptor-deficient mice. Low-dose, weekly methotrexate treatment increased the adenosine concentration in the peritoneal exudates of all mice studied, and reduced the leukocyte accumulation in the wild-type mice and A3 receptor knockout mice but not in the A2A receptor knockout mice. Methotrexate reduced exudate levels of TNF-α in the wild-type mice and A3 receptor knockout mice but not the A2A receptor knockout mice. More strikingly, IL-10, a critical regulator of peritoneal inflammation, was increased in the methotrexate-treated wild-type mice and A3 knockout mice but decreased in the A2A knockout mice. Dexamethasone, an agent that suppresses inflammation by a different mechanism, was similarly effective in wild-type mice, A2A mice and A3 knockout mice. These findings provide further evidence that adenosine is a potent regulator of inflammation that mediates the anti-inflammatory effects of methotrexate. Moreover, these data provide strong evidence that the anti-inflammatory effects of methotrexate and adenosine are mediated by different receptors in different inflammatory loci, an observation that may explain why inflammatory diseases of some organs but not of other organs respond to methotrexate therapy.
Highlights
Low-dose weekly methotrexate has become the mainstay treatment of rheumatoid arthritis and psoriasis, and it is the gold standard by which other systemic medications are measured in both disorders [1,2]
Prior studies demonstrate that adenosine, acting at one or more of its receptors, mediates the anti-inflammatory effects of methotrexate in animal models of both acute and chronic inflammation. Both adenosine A2A and A3 receptors contribute to the anti-inflammatory effects of methotrexate treatment in the air pouch model of inflammation, and the regulation of inflammation by these two receptors differs at the cellular level
Because different factors may regulate inflammation at different sites we examined the effect of low-dose weekly methotrexate treatment (0.75 mg/kg/week) in a model of acute peritoneal inflammation in adenosine A2A receptor knockout mice and A3 receptor knockout mice and their wild-type littermates
Summary
Low-dose weekly methotrexate has become the mainstay treatment of rheumatoid arthritis and psoriasis, and it is the gold standard by which other systemic medications are measured in both disorders [1,2]. An increasing body of evidence indicates that adenosine mediates, at least in part, the anti-inflammatory effects of methotrexate [8,9,10,11,12,13]. All known adenosine cell surface receptors (A1, A2A, A2B and A3) contribute to the modulation of inflammation, as demonstrated by many in vitro and in vivo pharmacologic studies (reviewed in [14,15]). We have previously demonstrated pharmacologically, using nonselective antagonists, that the anti-inflammatory effect of methotrexate is mediated by more than one subtype of adenosine receptor in the adjuvant arthritis model in the rat [16], and, using mice ren-. Dered deficient in A2A or A3 adenosine receptors, we found that both receptor subtypes are critical for the anti-inflammatory effects of methotrexate in the murine air pouch model of inflammation [17]. Since inflammation at different loci may be regulated by different cellular mechanisms, we determined whether the A2A and A3 receptors played similar roles in regulating inflammation in the peritoneum
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.