Abstract

Effect of low temperature gas carburizing (LTGC) on hydrogen absorption and hydrogen embrittlement (HE) susceptibility of 304L metastable austenitic stainless steel was investigated. The LTGC treatment imparted carburized layer on the steel surface with supersaturated solute carbon atoms (namely expanded austenite or S-phase) and more than 1 GPa surface compressive stress. Carburized layer thickness, carbon concentration level, residual compressive stress and hardness increased but hydrogen absorption decreased with increasing LTGC treatment time. Carburized surface layers had much higher austenite stability. The HE susceptibility of carburized steel was reduced due to the reduction of hydrogen absorption and the increment of austenite stability. The specimens whose residual compressive stresses were eliminated by tensile plastic straining also exhibited low hydrogen absorption during hydrogen charging, indicating that, besides the residual compressive stress, the supersaturated solute carbon atoms also have the ability to reduce hydrogen absorption. In addition, the results indicate that the supersaturated solute carbon atoms in the LTGC case can suppress hydrogen solubility without affecting diffusivity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call