Abstract

The current prevention options for postmenopausal osteoporosis are very limited. E'Jiao is a collagen-rich traditional Chinese medicine with the potential to prevent osteoporosis but more comprehensive investigations are lacking. This study aimed to investigate the skeletal protective effects of E'Jiao in a rat model of osteoporosis caused by ovariectomy. Female Sprague Dawley rats (n=42) were randomly assigned into baseline, sham, ovariectomised (OVX) control, OVX-treated with low-dose (0.26g/kg), medium dose (0.53g/kg) and high dose E'Jiao (1.06g/kg), as well as calcium carbonate (1% w/v) groups. Daily treatment through oral gavage was initiated 7 days after OVX. The rats were euthanised after eight weeks of treatment. Bone mineral density and content were measured at baseline, 1 and 2 months after treatment. Blood was collected for the measurement of bone remodelling markers. Femur and tibial bones were collected for histomorphometry and biomechanical strength analysis. Untreated OVX rats showed high bone remodelling marked by the increased bone formation and bone resorption markers, as well as increased mineralising surface/bone surface ratio. In addition, osteoclast surface and single-labelled surface were increased while mineral apposition rate was reduced in the untreated OVX rats. These changes were antagonised by E'Jiao at all doses. However, the structural, cellular and biomechanical parameters were not affected by ovariectomy and treatment. In conclusion, E'Jiao prevented high bone remodelling during oestrogen deficiency but a long-term study will be required to establish its effects on structural and biomechanical changes due to oestrogen deficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.