Abstract

Hepatitis C virus (HCV) develops persistent infection in most infected patients, and eventually cause chronic hepatitis, liver cirrhosis and then hepatocellular carcinoma. The combination therapy of PEG-IFN and ribavirin improves the efficacy in many patients, while it does not lead to sufficient achievements in genotype1b patients. To invent new anti-HCV reagent, we focused on host factors which HCV take advantage of in its life-cycle. We identified serine palmitoyltransferase inhibitor as anti-HCV reagent through high-through put screenig using HCV replicon cells. Moreover, we evaluate the anti-HCV effect of SPT-inhibitor in vivo with humanized chimeric mice. SPT-inhibitor led to rapid decline in serum HCV-RNA of about 1-2log within 8 day, futhermore the combination therapy of SPT-inhibitor and PEG-IFN achieved about 3log reduction in serum HCV-RNA. At last, we investigated the mechanism of anti-HCV effect of SPT-inhibitor. It has been reported that sphingolipids and cholesterol compose the lipid raft, in which the replication of HCV occur. We investigated the influence of SPT-inhibitor to lipid rafts by analysing the detergent resistant membrane (DRM). The analysis proved that SPT inhibitor got HCV RNA dependent RNA polymerase (NS5B) to move to detergent soluble fraction from DRM, and Biacore analysis indicated the binding of sphingomyelin to NS5B. These results suggested SPT inhibitor got NS5B to release from replication complex.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.