Abstract

Objective: Carbon monoxide (CO) levels in expired gas are higher in patients with bronchial asthma than in healthy individuals. Heme oxygenase-1 (HO-1) is a rate-limiting enzyme that catalyzes the degradation of heme to yield biliverdin, CO and free iron. Thus, HO-1 is implicated in the pathogenesis of bronchial asthma. However, whether HO-1 expression and activity in lung tissue are related to allergic airway inflammation remains unclear. We investigated whether expression of HO-1 is related to allergic airway inflammation in lungs and whether HO-1 could influence airway hyperresponsiveness and eosinophilia in mice sensitized to ovalbumin (OVA). Methods: C57BL/6 mice immunized with OVA were challenged thrice with an aerosol of OVA every second day for 8 days. HO-1-positive cells were identified by immunostaining in lung tissue, and zinc protoporphyrin (Zn-PP), a competitive inhibitor of HO-1, was administered intraperitoneally to OVA-immunized C57BL/6 mice on day 23 (day before inhalation of OVA) and immediately before inhalation on the subsequent 4 days (total five doses). Mice were analyzed for effects of HO-1 on AHR, inflammatory cell infiltration and cytokine levels in lung tissue. Ethical approval was obtained from the concerned institutional review board. Results: Number of HO-1-positive cells increased in the subepithelium of the bronchi after OVA challenge, and HO-1 localized to alveolar macrophages. Zn-PP clearly inhibited AHR, pulmonary eosinophilia and IL-5 and IL-13 expression in the lung tissue. Conclusion: Expression of HO-1 is induced in lung tissue during attacks of allergic bronchial asthma, and its activity likely amplifies and prolongs allergic airway inflammation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call