Abstract
As a typical non-smooth bifurcation, grazing bifurcation can induce instability of elementary near-grazing impact periodic motion in impact oscillators. In this paper, the stability for near-grazing period-one impact motion to suppress grazing-induced instabilities is analyzed, based on which, a control strategy is proposed. The commonly-used leading order zero time discontinuity mapping is extended to a higher order one to aid the perturbation analysis of the characteristic equation. It is shown that the degenerate grazing bifurcation can eliminate the singular term in the characteristic equation, leading to bounded eigenvalues. Based on such a precondition, the bounded eigenvalues are further restricted inside the unit circle, and a continuous transition between non-impact and controlled impact motion is observed. One discrete feedback controller that changes the velocity of the oscillator based on the selected Poincare sections is adopted to demonstrate the control procedure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.