Abstract

The aim of the present study was to assess the neuroprotective effects of tetrahydrocurcumin (THC) in a mouse model of cerebral ischemia/reperfusion (I/R) injury, and to investigate the involvement of Golgi reassembly and stacking protein 65 (GRASP65) and the extracellular signal‑regulated kinase (ERK) signaling pathway. Cerebral I/R injury was induced using the Pulsinelli four‑vessel occlusion method. After 5min of reperfusion, mice received THC (5, 10 or 25mg/kg) or saline by intraperitoneal injection. After 24h of reperfusion, mice underwent neurological evaluation. Infarct volumes were determined by triphenyltetrazolium chloride staining, and levels of superoxide dismutase and malondialdehyde were measured in brain tissue homogenates. Expression of GRASP65, phosphorylated‑GRASP65, ERK and phosphorylated‑ERK was determined by western blotting. THC induced a dose‑dependent decrease in the phosphorylation of ERK and GRASP65. Thus, THC attenuated I/R injury‑induced activation of the ERK signaling pathway and reduced the phosphorylation of GRASP65. THC exhibited a dose‑dependent protective effect against cerebral I/R injury, mediated by suppression of the ERK signaling pathway and a subsequent reduction in GRASP65 phosphorylation. The current study provided new information in the research of the cerebral ischemia‑reperfusion injury mechanism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call