Abstract
During diapause in mosquitoes, efficient storage and utilization of energy are crucial for surviving prolonged periods of developmental arrest and for maximizing reproductive success once diapause is terminated and development recommences. In Culex pipiens, glycogen rapidly accumulates during early diapause (7–10 days after adult eclosion) and it is used to maintain energy homeostasis during the first month of diapause. In this study, a gene encoding glycogen synthase, which converts glucose residues into a polymeric chain for storage as glycogen, was characterized. After dsi-RNA directed against glycogen synthase was injected into mosquitoes programmed for diapause (reared under short day lengths), Cx. pipiens were fed 1% d-[13C6]glucose, and the knockdown effects after 7-days were monitored by measuring 13C-labeled carbohydrate accumulation using solid-state NMR. The use of 13C cross-polarization magic-angle spinning spectrum showed a 46% reduction of 13C-labeled glycogen and a 6% reduction in lipid accumulation in glycogen synthase knockdown adult females. In addition, the suppression of glycogen synthase dramatically increased the mortality rate of diapausing Cx. pipiens by 88% at 30-days post injection. These findings indicated that glycogen synthase plays a critical role in regulating glycogen and lipid storages during overwintering diapause, and its function is essential for successful overwintering and survival of Cx. pipiens.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.