Abstract

This study examined the detectability of flicker for small foveal long-wavelength test stimuli centered within surrounding long-wavelength annular adaptation stimuli. Flicker threshold-versus-illuminance (tvi) curves were analyzed for four different test-stimulus waveforms--sine-wave, square-wave, and rapid-on sawtooth and rapid-off sawtooth flicker--at temporal frequencies ranging from 12 to 21 Hz and at temporal modulation depths ranging from approximately 50% to 100%. For all stimulus combinations that were examined involving temporal frequencies above 12 Hz, the resultant flicker tvi curves shared the following characteristic features: First, at operationally dim surround illuminances, there was always a single elevated threshold for detection of flicker. Second, some surround illuminance always could be found for which flicker threshold decreased abruptly, typically by approximately 1.5 log units within 0.1 log unit of surround illuminance increase. Third, when test illuminance was incremented above this lower flicker threshold, flicker always vanished; when test illuminance was incremented still further, flicker reappeared. Finally, at sufficiently bright surround illuminances flicker did not disappear with increasing test illuminance. Although these effects held for all waveforms, the abrupt decrease of flicker threshold occurred at brighter surround illuminances for sawtooth than for sine-wave flicker, and at brighter surround illuminances for sine-wave than for square-wave flicker, at least for fully modulated waveforms (of a given temporal frequency). Moreover, when modulation depth was adjusted so that any two different waveforms had the same first-harmonic contrast, the resultant flicker tvi curves became identical when plotted as first-harmonic amplitude versus surround illuminance. This identity held for any given temporal frequency, even though the flicker tvi curves for 12-Hz fully modulated sine-wave or square-wave flicker did not manifest flicker response suppression, whereas the flicker tvi curves for sawtooth flicker did. These and other results imply that the first-harmonic contrast of the test stimulus fully determines the shape of the entire flicker tvi curve and that the dc component of the test stimulus helps to cause flicker response suppression. The results also demonstrate that first-harmonic equivalence is only a necessary, not a sufficient, condition for linearity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call