Abstract

The structural, vibrational, morphological and magnetic properties of maghemite (γ-Fe2O3) nanoparticles functionalized with polar molecules EDTA(or H4Y) and H2Y are reported. The samples were functionalized before and after total synthesis of γ-Fe2O3 nanoparticles. The molecules are anchored on the monodentate mode on the nanoparticles surface. Transmission electron microscopy (TEM) revealed the formation of maghemite nanoparticles with small diameter of 4nm for the sample functionalized upon synthesis and 7.6 and 6.9nm for the samples functionalized with EDTA and H2Y after the formation of nanoparticles. Exchange bias phenomena were observed in some of the samples functionalized with EDTA at temperatures below 70K. The presence of the bias effect was discussed in terms of the formation of a thin layer of a secondary phase like lepidocrocite, and the absence of this effect was explained in terms of the chemisorption of carboxylic groups from EDTA which suppressed the canting. Studies of Mössbauer spectroscopy as a function of temperature showed slow relaxation effects and allowed discussion of the secondary phase. In the M–T curves a maximum around 116K was associated with this secondary phase also in agreement with the Mössbauer studies. The dynamic properties were studied by AC susceptibility, the out of phase signal revealed a spin glass like regime below 36.5K.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.