Abstract
Emodin, a tyrosine kinase inhibitor, is a natural anthraquinone derivative found in the roots and rhizomes of numerous plants. Emodin exhibits anticancer effects against a variety of cancer cells, including lung cancer cells. ERCC1 and Rad51 proteins are essential for nucleotide excision repair and homologous recombination, respectively. Furthermore, ERCC1 and Rad51 overexpression induces resistance to DNA-damaging agents that promote DNA double-strand breaks. Accordingly, the aim of this study was to determine the role of ERCC1 and Rad51 in emodin-mediated cytotoxicity in human non-small cell lung cancer (NSCLC) cells. Both ERCC1 and Rad51 protein levels as well as mRNA levels were decreased in four different NSCLC cell lines after exposure to emodin. These decreases correlated with the inactivation of the MKK1/2-ERK1/2 pathway. Moreover, cellular ERCC1 and Rad51 protein and mRNA levels were specifically inhibited by U0126, a MKK1/2 inhibitor. We found that transient transfection of human NSCLC cells with si-ERCC1 or si-Rad51 RNA and cotreatment with U0126 could enhance emodin-induced cytotoxicity. In contrast, overexpression of constitutively active MKK1/2 vectors (MKK1/2-CA) was shown to significantly recover reduced phospho-ERK1/2, ERCC1, and Rad51 protein levels and to rescue cell viability upon emodin treatment. These results demonstrate that activation of the MKK1/2-ERK1/2 pathway is the upstream signal regulating the expressions of ERCC1 and Rad51, which are suppressed by emodin to induce cytotoxicity in NSCLC cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.