Abstract

In the current generation of 3D electronic packaging, multiple reflows are often required during soldering. In addition, electronic packages may be subjected to additional solder rework or other heating processes. This paper investigates the effects of multiple reflow cycles on TiO2 reinforced Sn–0.7Cu solder fabricated by a powder metallurgy microwave sintering technique. Compared to TiO2-free equivalents, a relative suppression of the Cu6Sn5 phase, both as primary crystals and as an interfacial layer was observed. The likely mechanism relates to the TiO2 nanoparticles promoting nucleation and decreasing the amount of time that liquid is in contact with the interfacial layer. The TiO2 particles appear to stabilise the interfacial Cu6Sn5 layer and result in a more planar morphology. The suppression of Cu6Sn5 results in TiO2 reinforced solder joints having a higher shear strength after multiple reflow cycles compared to Sn–0.7Cu solder joints.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.