Abstract

For sessile droplets of pure liquid on a surface, evaporation depends on surface wettability, the surrounding environment, contact angle hysteresis, and surface roughness. For non-pure liquids, the evaporation characteristics are further complicated by the constituents and impurities within the droplet. For saline solutions, this complication takes the form of a modified partial vapor pressure/water activity caused by the increasing salt concentration as the aqueous solvent evaporates. It is generally thought that droplets on surfaces will crystallize when the saturation concentration is reached, i.e., 26.3% for NaCl in water. This crystallization is initiated by contact with the surface and is thus due to surface roughness and heterogeneities. Recently, smooth, low contact angle hysteresis surfaces have been created by molecular grafting of polymer chains. In this work, we hypothesize that by using these very smooth surfaces to evaporate saline droplets, we can suppress the crystallization caused by the surface interactions and thus achieve constant volume droplets above the saturation concentration. In our experiments, we used several different surfaces to examine the possibility of crystallization suppression. We show that on polymer grafted surfaces, i.e., Slippery Omniphobic Covalently Attached Liquid-like (SOCAL) and polyethyleneglycol(PEGylated) surfaces, we can achieve stable droplets as low as 55% relative humidity at 25 °C with high reproducibility using NaCl in water solutions. We also show that it is possible to achieve stable droplets above the saturation concentration on other surfaces, including superhydrophobic surfaces. We present an analytical model, based on water activity, which accurately describes the final stable volume as a function of the initial salt concentration. These findings are important for heat and mass transfer in relatively low humidity environments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.