Abstract

Development of androgen independence and resistance to apoptosis in prostate cancer are often correlated with high levels of serum tumor necrosis factor (TNF)-alpha in these patients. The loss of sensitivity to TNF-alpha-induced apoptosis in androgen-insensitive prostate carcinoma cells is due in part to constitutive activation of Rel/nuclear factor (NF)-kappaB transcription factors that regulate several cell survival and antiapoptotic genes. Our previous studies have demonstrated growth inhibitory and apoptotic effects of apigenin, a common plant flavonoid, in a variety of human prostate carcinoma cells. Here we examined whether apigenin is effective in inhibiting NF-kappaB expression in androgen-insensitive human prostate carcinoma cells exhibiting high constitutive levels of NF-kappaB. Using androgen-insensitive human prostate carcinoma PC-3 cells, the effect of apigenin was assessed on NF-kappaB activation by electrophoretic mobility shift assay and reporter gene assay. Expression of NF-kappaB subunits p65 and p50, IkappaBalpha, p-IkappaBalpha, in-beads kinase assay and NF-kappaB-regulated genes were determined by Western blot analysis. Apoptosis was determined by annexin V/propidium iodide staining after fluorescence-activated cell-sorting analysis. Treatment of cells with 10-40- micro M doses of apigenin inhibited DNA binding and reduced nuclear levels of the p65 and p50 subunits of NF-kappaB. Apigenin inhibited IkappaBalpha degradation and IkappaBalpha phosphorylation and significantly decreased IKKalpha kinase activity. Apigenin also inhibited TNF-alpha-induced activation of NF-kappaB via the IkappaBalpha pathway, thereby sensitizing the cells to TNF-alpha-induced apoptosis. The inhibition of NF-kappaB activation correlated with a decreased expression of NF-kappaB-dependent reporter gene and suppressed expression of NF-kappaB-regulated genes [specifically, Bcl2, cyclin D1, cyclooxygenase-2, matrix metalloproteinase 9, nitric oxide synthase-2 (NOS-2), and vascular endothelial growth factor]. Our results indicate that inhibition of NF-kappaB by apigenin may lead to prostate cancer suppression by transcriptional repression of NF-kappaB-responsive genes as well as selective sensitization of prostate carcinoma cells to TNF-alpha-induced apoptosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.