Abstract

The mechanism of the biofungicide Prestop® (Clonostachys rosea) was investigated for control of clubroot (Plasmodiophora brassicae) on canola. The key product components were partitioned and assessed for their effect on pathogen resting spores, root hair infection (RHI) and disease development using light microscopy, quantitative PCR and different application treatments during infection. The whole product of Prestop was consistently more effective than the C. rosea conidial suspension or product filtrate alone in reducing RHI and clubroot development. This biofungicide showed little effect on germination or viability of resting spores. Two‐application treatments at seeding and 7–14 days after seeding achieved greater clubroot control than a single application of the biofungicide at either seeding or post‐seeding stage. This may indicate the need to maintain a high biofungicide dose in the soil during primary and secondary infection. This biocontrol fungus colonized the rhizosphere and interior of canola roots extensively, and possibly induced plant resistance based on up‐regulation of the genes that are involved in jasmonic acid (BnOPR2), ethylene (BnACO) and phenylpropanoid (BnOPCL, BnCCR) biosynthetic pathways. It is concluded that the biofungicide Prestop suppressed clubroot on canola at least via root colonization and induced systemic resistance (ISR), and the latter may be through the modulation of phenylpropanoid and jasmonic acid/ethylene metabolic pathways elicited by the fungus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call