Abstract

Chromosome instability (CIN) is an important driver of cancer initiation, progression, drug resistance, and aging. As such, genes whose inhibition suppresses CIN are potential therapeutic targets. We report here that deletion of an accessory DNA helicase, Rrm3, suppresses high CIN caused by a wide range of genetic or pharmacological perturbations in yeast. Although this helicase mutant has altered cell cycle dynamics, suppression of CIN by rrm3∆ is independent of the DNA damage and spindle assembly checkpoints. Instead, the rrm3∆ mutant may have increased kinetochore-microtubule error correction due to an altered localization of Aurora B kinase and associated phosphatase, PP2A-Rts1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call