Abstract

The pre-metastatic microenvironment consists of pro-metastatic and anti-metastatic immune cells in the early stages of cancer, when the primary tumor begins to proliferate. Redundantly, pro-inflammatory immune cells predominated during tumor growth. Although it is well known that pre-metastatic innate immune cells and immune cells fighting primary tumor cells become exhausted, the mechanism by which this occurs is unknown. We discovered that anti-metastatic NK cells were mobilized from the liver to the lung during primary tumor progression and that the transcription factor CEBPδ, which was upregulated in a tumor-stimulated liver environment, inhibited NK cell attachment to the fibrinogen-rich bed in pulmonary vessels and sensitization to the environmental mRNA activator. CEBPδ-siRNA treated anti-metastatic NK cells regenerated the binding proteins that support sitting in fibrinogen-rich soil, such as vitronectin and thrombospondin, increasing fibrinogen attachment. Furthermore, CEBPδ knockdown restored an RNA-binding protein, ZC3H12D, which captured extracellular mRNA to increase tumoricidal activity. Refreshed NK cells using CEBPδ-siRNA with anti-metastatic abilities would work at metastatic risk areas in the pre-metastatic phase, resulting in a reduction in lung metastasis. Furthermore, tissue-specific siRNA-based therapy in lymphocyte exhaustion may be beneficial in the treatment of early metastases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.