Abstract

Camptothecin is a monoterpenoid indole alkaloid that exhibits anti-tumor activity. In Ophiorrhiza pumila, production of camptothecin and its related alkaloids was high in the hairy roots, but not in the cell suspension culture derived from hairy roots. To identify the intermediates in camptothecin biosynthesis, expression of genes encoding tryptophan decarboxylase (TDC) and secologanin synthase (SLS), the two enzymes catalyzing the early steps in camptothecin biosynthesis, were suppressed in the hairy roots of O. pumila by RNA interference (RNAi), and metabolite changes were investigated. In most TDC- and SLS-suppressed lines, accumulation of camptothecin and related alkaloids, strictosidine, strictosamide, pumiloside, and deoxypumiloside was reduced. The accumulation levels of secologanin exhibited a strong negative correlation with the expression level of TDC, and that of loganin exhibited a negative correlation with the expression level of SLS. Some hairy root-specific chromatographic peaks detected by liquid chromatography Fourier transform ion cyclotron resonance mass spectrometry (LC-FTICR-MS) exhibited positive or negative correlation with TDC expression, suggesting their possible involvement in camptothecin biosynthesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.